8 research outputs found

    Banco de sementes de uma floresta tropical madura e alterada por downburst na Amazônia Central

    Get PDF
    The seed bank constitutes the main reserve of seedlings which will regenerate under anthropogenic and natural changes of great magnitude. It can be defined as a complex system that connects to several factors related to rates of inputs and losses of seeds in soil. The effects of natural disturbances on plant communities result in the formation of gaps. In rain forests, the occurrence of disturbances of great magnitude and very large gaps are rare. Some storms and wind gusts are caused by a phenomenon convective known as downburst and have different magnitudes of severity can totally suppress the tree cover. The present study aimed to characterize the density, richness, diversity, frequency of ecological groups and life habit of seedlings emerged from the seed bank of the mature and altered forest after downburst in different topographic classes and seasons. The average density of seeds was higher in the altered forest (702 seeds m-2) than in the mature forest (447 seeds m-2) independent of the seasons analyzed. In the rainy season there was a higher density of seeds (678 seeds m-2, rainy season; 522 seed m-2, dry season). Density of individuals of Melastomataceae suffered greater influence at the time of collection (U = 13.911,50; p = 0,01). There is no linear relationship between seed density, land slope and canopy openness. A richness and species diversity estimated for number common individuals indicated that the two sampled areas are equally diverse and rich. The high value of evenness indicated a dominance of few species in the seed bank. MRPP analysis showed significant differences in floristic diversity between the two stretches of forest sampled (MRPP, A = 0,124; p = 0,000, rainy; MRPP, A = 0,129; p = 0,000, dry). In the forest changed the floristic similarity analysis indicated differences between the two collection periods (MRPP, A = 0,008; p = 0,028) however mature forest for the differences were not significant (MRPP, A = 0,001; p = 0,351). Ordination detect differences in species richness between two stretches of forest (F = 29,72; p = 0,00, rainy; F = 33,94; p = 0,00, dry) the same was not observed for topographic classes. Of the 120 species present in the seed bank, 68 species do not form transient seed bank, even if present in low density. Melastomatacea, Urticaceae, Araceae e Moraceae configured among the most abundant. Melastomataceae configured as an important component of the seed bank contributing significantly to the number of individuals and species, together with Cecropia spp. these will contribute to the restructuring of the forest cover. The density of tre seedlings was higher than all other life habits identified. Higher density of shrub individuals in the forest changed reflects the successional stange. Irrespective of the severity of the disturbance, the seed bank has a high potential for forest regeneration.O banco de sementes constitui a principal reserva de propágulos na regeneração da floresta tropical, frente a alterações antrópicas e naturais de grande magnitude. Pode ser definido como um sistema complexo, que se conecta a inúmeros fatores relacionados às taxas de entradas e perdas das sementes nos solos. Os efeitos de distúrbios naturais nas comunidades vegetais resultam na formação de clareiras. Em florestas tropicais, a ocorrência de distúrbios de grande magnitude e clareiras muito grandes são eventos raros. Algumas tempestades e rajadas de vento são provocadas por um fenômeno convectivo conhecido como downburst e apresentam diferentes magnitudes de severidade podendo suprimir totalmente a cobertura arbórea. O presente estudo teve como objetivo caracterizar a densidade, riqueza, diversidade, frequência dos grupos ecológicos e hábito de vida das plântulas emergidas do banco de sementes de uma floresta madura e alterada após downburst, em diferentes classes topográficas e épocas do ano. A densidade média de sementes foi maior na floresta alterada (702 sementes m-2) do que na floresta madura (447 sementes m-2), independente do período de coleta. Na estação chuvosa, observou-se maior densidade de sementes (678 sementes m-2, chuvosa; 522 sementes m-2, seca). A densidade de indivíduos de Melastomataceae sofreu maior influência da época de coleta (U = 13.911,50; p = 0,01). Não existe uma relação linear entre densidade de sementes, declividade do terreno e abertura de dossel. A riqueza e a diversidade de espécies estimadas para um número comum de indivíduos indicou que as duas áreas amostradas são igualmente diversas e ricas. O alto valor de equabilidade indicou uma dominância de poucas espécies no banco de sementes. A análise de MRPP demonstrou diferenças significativas na diversidade florística entre os dois trechos de floresta amostrados (MRPP, A = 0,124; p = 0,000, chuvosa; MRPP, A = 0,129; p = 0,000, seca). Na floresta alterada a análise de similaridade florística indicou diferenças entre os dois períodos de coleta (MRPP, A = 0,008; p = 0,028), no entanto para floresta madura as diferenças não foram significativas (MRPP, A = 0,001; p = 0,351). A ordenação detectou diferenças na riqueza das espécies entre os dois trechos de floresta (F = 29,72; p = 0,00, chuvosa; F = 33,94; p = 0,00, seca), o mesmo não foi observado para as classes topográficas. Das 120 espécies presentes no banco de sementes, 68 espécies não formam um banco de sementes transitório, mesmo que presentes em baixa densidade. Melastomatacea, Urticaceae, Araceae e Moraceae configuraram entre as mais abundantes. Melastomataceae configurou como importante componente do banco de sementes, contribuindo de forma expressiva para o número de indivíduos e espécies, juntamente com as Cecropia spp., estas irão contribuir para reestruturação da cobertura florestal. A densidade de plântulas arbóreas foi superior a todos os outros hábitos de vida identificados. Maior densidade de indivíduos arbustivo na floresta alterada é reflexo do estágio sucessional. Independente da severidade do distúrbio, o banco de sementes apresenta alto potencial para regeneração florestal, contribuindo para diversidade e densidade de indivíduos

    Ecology of the Seed Bank in the Amazon Rainforest

    Get PDF
    The seed bank is directly related to forest resilience because it contributes to the greatest number of regenerants after the occurrence of disturbances. Changes in seed density, floristic composition, and life forms completely alter the successional trajectory of forest environments. These changes are directly related to land use. For example, suppression of the seed bank can occur in pastures, that experience frequent fires with increase of density of seeds and predominance of herbs are typical of highly degraded areas, such as Poaceae, Rubiaceae, Asteraceae, and Cyperaceae. Melastomataceae seedlings are an important component of the seed bank in the Amazon rainforest. On the other hand, Urticaceae has greater representation in forests that exhibit low-impact land use. Any change in seed bank functionality is bound to compromise the diversity, regeneration potential and overall maintenance of tropical forests. Therefore, it is necessary to expand studies that investigate seed banks in the Amazon rainforest. It is as important to prioritize sampling methods and pursue standardization of data presentation, as well as improve the identification of species that occur in the seed bank

    The importance of plant diversity in maintaining the pollinator bee, Eulaema nigrita (Hymenoptera: Apidae) in sweet passion fruit fields

    Get PDF
    The euglossine bee Eulaema nigrita plays an important role for the pollination of native and economically important plants, such as the sweet passion-fruit Passiflora alata. E. nigrita uniquely collects the nectar from the flowers of P. alata, nevertheless, it needs to visit other plants to collect pollen, nectar and other resources for its survival. There are two methods to identify the species of plants used by bees in their diet: by direct observation of the bees in the flowers, and through identification of pollen grains present in brood cells, feces, or in the bees' body. In order to identify the other plants that E. nigrita visits, we analyzed samples of pollen grains removed from the bee's body in the course of the flowering period of P. alata. Among our results, the flora visited by E. nigrita comprised 40 species from 32 genera and 19 families, some of them used as a pollen source or just nectar. In spite of being a polyletic species, E. nigrita exhibited preference for some plant species with poricidal anthers. P. alata which has high sugar concentration nectar was the main source of nectar for this bee in the studied area. Nonetheless, the pollinic analysis indicated that others nectariferous plant species are necessary to keep the populations of E. nigrita. Studies such as this one are important since they indicate supplementary pollen-nectar sources which must be used for the conservation of the populations of E. nigrita in crops neighbouring areas. In the absence of pollinators, growers are forced to pay for hand pollination, which increases production costs; keeping pollinators in cultivated areas is still more feasible to ensure sweet passion fruit production

    Delimitation of species of Tabernaemontana L. (Apocynaceae, Rauvolfioideae, Tabernaemontaneae)

    No full text
    Orientador: André Olmos SimõesTese (doutorado) - Universidade Estadual de Campinas, Instituto de BiologiaResumo: O gênero Tabernaemontana (Apocynaceae, Rauvolfioideae, Tabernaemontaneae) é composto por aproximadamente 115 espécies e das sete seções previamente reconhecidas, somente T. seção Pagiantha, T. seção Peschiera e T. seção Rejoua são monofiléticas. Em um estudo filogenético prévio (Simões et al. 2010), T. aurantiaca se posicionou no clado Callichilia e não no clado Tabernaemontana, apesar da semelhança morfológica com as espécies desse clado, principalmente as espécies que ocorrem na Ásia e Bacia do Pacífico. Com o intuito de elucidar o posicionamento de T. aurantiaca, inferir as relações interespecíficas de T. seção Peschiera, e contribuir para o reconhecimento das espécies com problemas de identificação e delimitação a tese está dividida em quatro capítulos. Em Tabernaemontana seção Peschiera, T. laeta, T. catharinensis, T. hystrix e T. salzmannii apresentam grande variação morfológica, os quais ocasionam problemas de identificação e delimitação dos táxons. Os capítulos têm como objetivos: elucidar o posicionamento de T. aurantica (capítulo 1), inferir as relações interespecíficas das espécies de T. seção Peschiera (capítulo 2) e verificar se as morfoespécies estabelecidas a priori correspondem a agrupamentos morfológicos distintos nos complexos taxonômicos T. catharinensis (capítulo 3) e T. laeta e T. hystrix (capítulo 4). Para os capítulos 1 e 2 foram geradas sequências de DNA e utilizadas sequências disponíveis em bancos de dados públicos, e para os demais capítulos utilizamos a morfologia tradicional aliada a morfometria geométrica dos botões florais e morfometria linear dos caracteres florais e foliares. Os grupamentos taxonômicos foram divididos previamente em morfoespécies, com base nos caracteres morfológicos dos materiais coletados, assim como das revisões taxonômicas, exsicatas depositadas nos herbários e bancos de dados digitais. Tabernaemontana catharinensis foi subdividida em quatro morfoespécies (T. catharinensis 1, 2, 3 e 4), T. laeta e T. hystrix foram subdivididos em uma espécie (T. laeta) e cinco morfoespécies (1a, 1f, 2, 3 e 4, respectivamente), e T. salzmannii em três morfoespécies (T. salzmannii 1,2, e 3). Baseado no posicionamento filogenético e caracteres morfológicos, T. aurantica foi recuperada como uma linhagem distinta, sendo proposto o restabelecimento do gênero monotípico Rejoua (capítulo 1). No capítulo 2 os marcadores nucleares e plastidiais tiveram baixo sinal filogenético e com incongruência entre os marcadores com diferentes tipos de heranças parentais. Pela análise concatenada dos marcadores nucleares T. arborea, T. catharinensis2, T. heterophylla e T. salzmannii 1 e 3 foram recuperadas como monofiléticas, os demais táxons como parafiléticos. As espécies T. arborea, T. vanheurckii, T. cymosa e T. heterophylla foram os primeiros táxons a se divergir e são espécies irmãs dos demais táxons de T. seção Peschiera. A análise dos caracteres vegetativos e florais possibilitou o reconhecimento de quatro espécies dentro do complexo taxonômico T. catharinensis (capítulo 3), essas correspondem a T. hilariana, T. catharinensis, T. caatingae (espécie nova) e T. solanifolia. Nos complexos taxonômicos T. laeta e T. hystrix foi possível o reconhecimento de três espécies distintas, essas corresponderam aos táxons T. laeta e morfoespécies 2 e 3 (capítulo 4)Abstract: The genus Tabernaemontana (Apocynaceae, Rauvolfioideae) has around 115 species, and of the seven sections previously recognized, only Tabernaemontana section Pagiantha, T. section Peschiera and T. section Rejoua are monophyletic. In a previous phylogenetic study (Simões et al. 2010), T. aurantiaca was positioned in the clade Callichilia and not in the Tabernaemontana clade, despite the morphological similarity with the species of that clade, mainly the species that occur in Asia and the Pacific Basin. To elucidate the positioning T. aurantiaca, infer the interspecific relationships of T. section Peschiera, and contribute to the recognition of species with problems of identification and delimitation, the thesis is divided into four chapters. In Tabernaemontana section Peschiera, T. laeta, T. catharinensis, T. hystrix, and T. salzmannii have great morphological variation, which causes problems of identification and delimitation of specimens. The chapters aim to: elucidate the positioning of T. aurantica (chapter 1), infer the interspecific relationships of the species of T. section Peschiera (chapter 2), and verify whether the morphospecies established a priori correspond to distinct morphological groupings in the taxonomic complexes T. catharinensis (chapter 3), T. laeta and T. hystrix (chapter 4). For chapters 1 and 2, DNA sequences were generated and sequences available in public databases were used, and for the other chapters, we used traditional morphology combined with geometric morphometrics of flower buds, linear morphometry of floral and leaf characters. These taxonomic groupings were previously divided into morphospecies, based on the morphological characters of the collected materials and observations in the field, as well as the taxonomic revisions, exsiccates deposited in the herbariums and digital databases. Tabernaemontana catharinensis was subdivided into four morphospecies (T. catharinensis 1, 2, 3, and 4), T. laeta and T. hystrix were subdivided into one species (T. laeta) and five morphospecies (1a, 1f, 4), and T. salzmannii in three morphospecies (T. salzmannii 1, 2 and 3). Based on phylogenetic positioning and morphological characters, T. aurantica was recovered as a distinct lineage, being proposing the reestablishment of the monotypic genus Rejoua (chapter 1). In chapter 2, nuclear and plastid markers had low phylogenetic signal and incongruence between markers with different types of parental inheritance. By the concatenated analysis of nuclear markers T. arborea, T. catharinensis2, T. heterophylla, and T. salzmannii 1 and 3 were recovered as monophyletic, the other taxa as paraphyletic. The species T. arborea, T. vanheurckii, T. cymosa, and T. heterophylla were the first taxa to diverge and are sister species of the other taxa of T. section Peschiera. Based on the vegetative and floral characters analyzed, it enabled the recognition of four species within the taxonomic complex T. catharinensis (chapter 3), these correspond to T. hilariana, T. catharinensis, T. caatingae (new species), and T. solanifolia. In taxonomic complexes T. laeta and T. hystrix made it possible to recognize three distinct species, these corresponded to the taxa T. laeta and morphospecies 2 and 3 (chapter 4)DoutoradoBiologia VegetalDoutora em Biologia Vegetal001142320/2015-3CAPESCNP

    Blowdown disturbance effect on the density, richness and species composition of the seed bank in Central Amazonia

    No full text
    Windstorms, known as blowdowns, create large canopy gaps in the tropical rainforest. Despite the occurrence of blowdowns in Central Amazonia, no studies have yet investigated the seed bank in areas altered by blowdown in the Amazon rainforest. The seed bank plays an important role in the regeneration of larger natural gaps, and changes in, or partial loss of, seed bank can modify the successional dynamics locally. In the present study, we compared the density, richness and floristic composition of a seed bank in a post-blowdown secondary forest with approximately six years old and a continuous forest. The seed bank was characterized by collecting 160 soil samples systematically distributed in each forest type at two different times. Samples were collected at a minimum distance of 30 m from each other, sampling the superficial soil 5 cm in depth and 20 cm in diameter. At each sampling point, the slope and canopy openness was also measured. The density and floristic composition of the seed bank was estimated using counts of seedlings that had emerged in a nursery of the collected soil samples. The post-blowdown secondary forest exhibited seed banks 30% denser and 20% richer, on average, than continuous forest. The floristic composition also differed between forest types, with a predominance of Melastomataceae, Urticaceae, and Araceae in the secondary forest, followed by Cyperaceae and Moraceae; however, these did not differ between forest types. In contrast, for other families, greater richness and density were observed in the continuous forest. Higher density and richness of trees, shrubs, epiphytes, and hemiepiphytes were observed in the secondary forest, except for the richness of epiphytes. In general, terrain slope was unrelated to density, richness and floristic composition of the seed bank. Under a disturbance of great magnitude, such as a blowdown, the density and richness of the seed bank were not reduced; on the contrary, its potential for local regeneration was maintained. Despite the limited contribution of the seed bank to the regeneration of climax species, the seed bank was shown to be diverse in species, including different life forms, and may contribute to the regeneration of forest strata, even after severe disturbances. © 2019 Elsevier B.V

    The importance of plant diversity in maintaining the pollinator bee, Eulaema nigrita (Hymenoptera: Apidae) in sweet passion fruit fields

    No full text
    The euglossine bee Eulaema nigrita plays an important role for the pollination of native and economically important plants, such as the sweet passion-fruit Passiflora alata. E. nigrita uniquely collects the nectar from the flowers of P. alata, nevertheless, it needs to visit other plants to collect pollen, nectar and other resources for its survival. There are two methods to identify the species of plants used by bees in their diet: by direct observation of the bees in the flowers, and through identification of pollen grains present in brood cells, feces, or in the bees’ body. In order to identify the other plants that E. nigrita visits, we analyzed samples of pollen grains removed from the bee’s body in the course of the flowering period of P. alata. Among our results, the flora visited by E. nigrita comprised 40 species from 32 genera and 19 families, some of them used as a pollen source or just nectar. In spite of being a polyletic species, E. nigrita exhibited preference for some plant species with poricidal anthers. P. alata which has high sugar concentration nectar was the main source of nectar for this bee in the studied area. Nonetheless, the pollinic analysis indicated that others nectariferous plant species are necessary to keep the populations of E. nigrita. Studies such as this one are important since they indicate supplementary pollen-nectar sources which must be used for the conservation of the populations of E. nigrita in crops neighbouring areas. In the absence of pollinators, growers are forced to pay for hand pollination, which increases production costs; keeping pollinators in cultivated areas is still more feasible to ensure sweet passion fruit production.La abeja euglosina Eulaema nigrita juega un impor- tante papel para la polinización de las plantas nativas y de importancia económica, como es el caso de la fruta de la pasión o maracuyá Passiflora alata. E. nigrita únicamente recoge el néctar las flores de P. alata, sin embargo, tiene que visitar otras plantas para recoger polen, néctar y otros recursos para su supervivencia. Hay dos métodos para identificar las especies de plantas utilizadas por las abejas en su dieta: por observación directa de las abejas en las flores, y a través de la identificación de los granos de polen presentes en las celdas de cría, heces o en el cuerpo de las abejas. Con el fin de identificar las otras plantas que E. nigrita visita, se analizaron muestras de granos de polen extraído del cuerpo de la abeja durante el período de floración de P. alata. Entre nuestros resultados, la flora visitada por E. nigrita está compuesta por 40 especies de 32 géneros y 19 familias, algunas de ellas utilizadas como fuente de polen o solamente de néctar. A pesar de ser una especie polifilética, E. nigrita exhibe preferencia por algunas especies de plantas con anteras poricidas. El néctar de P. alata tiene la más alta concentración de azúcar y fue la principal fuente de este recurso para las abejas en el área de estudio. Sin embargo, el análisis polínico indicó que otras especies de plantas nectaríferas son necesarias para mantener las poblaciones de E. nigrita. Estudios como éste son importantes pues indican cuales son las fuentes complementarias de néctar y polen que deben ser utilizadas para la conservación de las poblaciones de E. nigrita en los cultivos de las zonas vecinas. En ausencia de polinizadores, los productores se ven obligados a pagar por la polinización manual, lo que aumenta los costos de producción, por lo tanto el mantenimiento de polinizadores en las zonas cultivadas es más factible para asegurar la producción de la fruta de la pasión

    The importance of plant diversity in maintaining the pollinator bee, Eulaema nigrita (Hymenoptera: Apidae) in sweet passion fruit fields

    Get PDF
    The euglossine bee Eulaema nigrita plays an important role for the pollination of native and economically important plants, such as the sweet passion-fruit Passiflora alata. E. nigrita uniquely collects the nectar from the flowers of P. alata, nevertheless, it needs to visit other plants to collect pollen, nectar and other resources for its survival. There are two methods to identify the species of plants used by bees in their diet: by direct observation of the bees in the flowers, and through identification of pollen grains present in brood cells, feces, or in the bees&#8217; body. In order to identify the other plants that E. nigrita visits, we analyzed samples of pollen grains removed from the bee&#8217;s body in the course of the flowering period of P. alata. Among our results, the flora visited by E. nigrita comprised 40 species from 32 genera and 19 families, some of them used as a pollen source or just nectar. In spite of being a polyletic species, E. nigrita exhibited preference for some plant species with poricidal anthers. P. alata which has high sugar concentration nectar was the main source of nectar for this bee in the studied area. Nonetheless, the pollinic analysis indicated that others nectariferous plant species are necessary to keep the populations of E. nigrita. Studies such as this one are important since they indicate supplementary pollen-nectar sources which must be used for the conservation of the populations of E. nigrita in crops neighbouring areas. In the absence of pollinators, growers are forced to pay for hand pollination, which increases production costs; keeping pollinators in cultivated areas is still more feasible to ensure sweet passion fruit production<br>La abeja euglosina Eulaema nigrita juega un importante papel para la polinización de las plantas nativas y de importancia económica, como es el caso de la fruta de la pasión o maracuyá Passiflora alata. E. nigrita únicamente recoge el néctar las flores de P. alata, sin embargo, tiene que visitar otras plantas para recoger polen, néctar y otros recursos para su supervivencia. Hay dos métodos para identificar las especies de plantas utilizadas por las abejas en su dieta: por observación directa de las abejas en las flores, y a través de la identificación de los granos de polen presentes en las celdas de cría, heces o en el cuerpo de las abejas. Con el fin de identificar las otras plantas que E. nigrita visita, se analizaron muestras de granos de polen extraído del cuerpo de la abeja durante el período de floración de P. alata. Entre nuestros resultados, la flora visitada por E. nigrita está compuesta por 40 especies de 32 géneros y 19 familias, algunas de ellas utilizadas como fuente de polen o solamente de néctar. A pesar de ser una especie polifilética, E. nigrita exhibe preferencia por algunas especies de plantas con anteras poricidas. El néctar de P. alata tiene la más alta concentración de azúcar y fue la principal fuente de este recurso para las abejas en el área de estudio. Sin embargo, el análisis polínico indicó que otras especies de plantas nectaríferas son necesarias para mantener las poblaciones de E. nigrita. Estudios como éste son importantes pues indican cuales son las fuentescomplementarias de néctar y polen que deben ser utilizadas para la conservación de las poblaciones de E. nigrita en los cultivos de las zonas vecinas. En ausencia de polinizadores, los productores se ven obligados a pagar por la polinización manual, lo que aumenta los costos de producción, por lo tanto el mantenimiento de polinizadores en las zonas cultivadas es más factible para asegurar la producción de la fruta de la pasió

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora
    corecore